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Abstract 
Sound is certain to become a standard component of Virtual Environment (VE) interfaces. 

Current technology, however, has not brought about the wide spread use of sound in VEs. 
Research efforts have focused primarily on the localization problem - making sounds appear to 
emanate from a particular direction in 3D space. The problems of modeling the sonic environment 
and sound generation have not been adequately addressed. 

This paper presents the Virtual Audio Server (VAS), a system designed to address the 
problems of integrating sound into VEs. VAS is a real-time, distributed sound server. It provides 
high level abstractions for modeling the sonic environment. VAS's extensible architecture allows it 
to support a variety of rendering techniques. Parameterizable synthetic sound source are supported 
and a novel graceful degradation technique manages the real-time generation of those sound 
sources. 

1.      Introduction 

Virtual Environment (VE) interfaces are meant to immerse users in interactive computer 

generated worlds. The information content that a VE can convey to those users depends largely on 

the sensory channels utilized. While emphasis has historically been on the visual channel, 

researchers are beginning to recognize the importance of sound as a tool for conveying information 

to users and for enhancing the immersive qualities of VEs. 

Research efforts in sounding VEs have focused primarily on techniques for localizing 

sounds. While this is an important problem, it is certainly not the whole picture. Three basic 

problem areas need to be addressed by a VE sound system (fig. 1): 

Modeling the sonic environment. Modeling abstractions describe the static and dynamic 

properties of the elements comprising a sonic environment. Those abstractions should provide 

a rich programming toolkit for describing the environment while accommodating varying levels 

of expertise by the programmer. Beyond that, modeling abstractions should facilitate the 
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mapping of elements in the sonic environment to graphical constructs forming the visual 

environment. This helps the programmer to establish a coherent audio-visual environment. 

Real-time sound generation. Sound generation is the process of evaluating the representation 

of a sound at fixed intervals in order to produce an audio sample stream. Given that the number 

of concurrently active sound sources in an environment is not known a priori, it is possible that 

a point is reached where the available computational resources are not sufficient to maintain 

real-time evaluation of the sample streams. The sound generation mechanism must manage the 

computational resources so that the perceptible effects of an overload condition are minimized. 

Real-time sound rendering. Rendering sounds entails two problems: localization and 

simulating the environmental effects. Localization is the process of recreating spatial auditory 

cues so that sounds appear to emanate from a particular direction in 3D space. This can be done 

by recreating the sound sources around the listener using an array of strategically placed 

loudspeakers or by using filter convolution to simulate Head Related Transfer Functions [3] 

(HRTFs) and replaying the resultant sound over headphones. The suitability of these two 

techniques depends largely on the intended application. Calculating environmental effects 

requires that sound waves be traced from source to listener taking into account reflection, 

diffraction, and attenuation. Little work has been done in developing real-time techniques for 

simulating those effects. A VE sound system should support a variety of existing rendering 

techniques and also facilitate the exploration of new ones. 



There has been some work done in addressing the problem of modeling the sonic 

environment. The Audition sound server [1] uses an actor paradigm to model sounds and provides 

constructs for controlling and synchronizing them in real-time. The ENO server [19] is intended 

for incorporating non-speech audio cues into Unix applications. It introduces a novel approach to 

representing sounds using higher level abstractions such as sources, interactions, attributes and 

sound spaces. Work has also been done in sound synchronization and rendering in computer 

animation [9, 10]. 

Research efforts in addressing the localization problem have resulted in a number of 

approaches. The NA3 audio server [2] incorporates multiprocessing techniques in order to support 

software-based localization using HRTFs. The Acoustitron [4], a commercially available system 

developed by Crystal River Engineering, utilizes DSP coprocessors to provide hardware-based 

HRTF localization as well as simulation of some environmental effects. Finally, the NPSNET- 

PAS server [5] uses MIDI to control a sample playback device in order to generate sounds. Sounds 

are localized using six speakers surrounding the listener. A similar approach is used by Personal 

Audio [6], a commercially available system developed by VSI. 

The main problem with these approaches is that they focus primarily on localization, and do 

not address the whole process of integrating sound into VEs. The lack of resource management for 

real-time sound generation, for example, forces programmers to either limit the number of sound 

sources they use or to devise ad hoc methods for prioritizing sounds in the environment. Modeling 

abstractions in these systems are geared primarily to describing the physical aspects of the sonic 

environment without taking into account the visual constructs with which they must be associated. 

Finally, current systems are "hardwired" to use a single localization technique which may not be 

ideal for all the applications. 

This paper describes the Virtual Audio Server (VAS) which addresses the problems 

described above. VAS provides the programmer with high level abstractions for modeling the 

sonic environment, requiring little or no knowledge of underlying audio hardware. The system 

supports both sampled and synthetic representations of sound so that a wide range of options are 



available in determining the content of the sonic environment. Sound generation is managed by a 

real-time scheduler that provides graceful degradation in the case of overload. An extendible 

architecture allows the system to support a variety of existing as well as future rendering 

techniques. Finally, in order to promote the use of sound in VEs, VAS has been made publicly 

available on the internet 1. The system has been used to integrate sound into a number of large scale 

VE systems. 

In the following sections we describe the salient features of the VAS system. Section 2 

presents an overview the system. Section 3 discusses how VAS models the sonic environment. In 

Section 4 we discuss problems with real-time sound generation. Finally in section 5, we discuss 

VAS's support for various real-time sound rendering techniques. 

2.      System Overview 

1 VAS is available via anonymous ftp from ftp.gwu.edu/VAS 



VAS is partitioned into four functional areas as depicted in fig. 2. Remote Objects provide 

client applications with access to the server. Each server object with which the client interacts has a 

corresponding Remote Object on the client's machine. This object acts as a local representative, 

mirroring the state of its server object and communicating with that object when necessary. This 

approach maintains an object oriented interface to the server and minimizes the communication 

required between client and server. 
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Figure 2: VAS system architecture 

Sonic Scene Elements model the sonic environment. They consist of the Auditory World 

which maintains the state of the sonic environment including all the objects within it. Auditory 

Actors model high level scene elements which consist of listeners, spaces, and sound producing 

entities. Sounds evaluate sound samples and write the resultant samples to Devices. An instance of 

a Device is attached to each Sound and provides it with a device independent interface to any 

rendering mechanism used by the server. Finally, the Scheduler manages the real-time evaluation 

of active sounds in the environment. 



3.      Modeling the Sonic Environment 

VAS incorporates an actor based model of the sonic environment which closely parallels 

many of the constructs developed for modeling the visual environment. This facilitates the 

integration process because the two models naturally correspond and their constituent objects are 

functionally similar. 

3.1.   Auditory Actors 

VAS models any sound producing entity in the world using the Auditory Actor. Auditory 

Actors give the visual entities in the scene auditory properties in the form of a sound repertoire. 

The Auditory Actors' interface provides control primitives for positioning the actor in 3D space, 

adding and removing sounds from the actor's sound repertoire, for controlling the play state of 

those sounds and for controlling a sound's timbre through its parameter space. 

Auditory Actors can be controlled directly using the primitives described above, or their 

actions can be scripted. Each Auditory Actor includes a script manager which maintains a set of 

time-stamped auditory events. Each auditory event represents an invocation of one of the Auditory 

Actor's interface methods. The Auditory World maintains a global clock which is used by the 

script manager to invoke the auditory events at their assigned time. 

The VAS Listener is a specialized version of the Auditory Actor. The only added property 

is the head orientation of the user. This allows the Listener to be a sound producing entity, which 

can be a very useful feature for communicating information to the user such as motion cues 

(footsteps for example) and collision sounds. 

The Auditory Space is another specialized Auditory Actor. It models distinct sonic spaces 

within the environment. An Auditory Space consists of one or more barriers each modeling an 

occluding surface. A barrier is essentially a bounded plane with which we associated a reflectivity 

and attenuation value. Ambient sounds which are attached to Auditory Spaces help distinguish 

sonic regions by giving them a unique character. 



3.2.   Sound Sources 

The VAS system supports both sampled and synthetic sound sources. Sampled sounds are 

digital recordings of sounds that are temporally mapped and played back on demand. Like image- 

based texture maps in graphics, sampled sounds have gained wide popularity because they can be 

used to easily create complex sounds that would otherwise be difficult or impossible to synthesize. 

There are, however, drawbacks to this representation - the control parameters available to modify 

the characteristics of sampled sounds are limited due to the static nature of the representation. 

Synthetic sounds are procedurally defined, one dimensional functions in the temporal 

domain. They are equivalent to procedural textures in the visual realm and have the same 

advantages and disadvantages. Their representation is inherently compact which makes them 

appealing for distributed applications such as VRML [8] clients. Their representation can be 

arbitrarily parameterized which makes them useful for data sonification (mapping data to sounds) 

and for synthesizing sounds from physical parameters. Finally, a procedural representation is a 

powerful construct giving the sound designer complete control over the shaping of the sound's 

timbre. 

The primary disadvantage of synthetic sounds is that they are difficult to specify. They 

require a deep understanding of the sound synthesis process and an intuitive sense of how to 

achieve desired results. Another drawback of synthetic sounds is that they are computationally 

expensive. We have attempted to address both of these problems in our chosen representation of 

synthetic sounds, and in the graceful degradation approach implemented by the VAS scheduler. 

Synthetic sounds are modeled using Timbre Trees [9], a functional representation of sound 

which was originally designed for use in computer animation. Timbre Trees represent sounds 

using a tree structure where the internal nodes of the tree are signal processing nodes, and the leaf 

nodes of the tree are signal generating nodes. Any node in the tree can be parameterized simply by 

inserting a named parameter in the node's definition. A parameter's value can be modified at run 

time through the Auditory Actor's interface. Our intention in using this representation is to develop 



a library of parameterized trees where each tree represents a class of sounds. Specific results can 

then be achieved by varying a small set of intuitive parameters associated with each class of 

sounds. 

VAS models sound sources as active objects so that each Sound object has a thread of 

execution associated with it. This thread is responsible for evaluating the sound signal and writing 

the resultant samples to its attached Device. 

4.      Managing Real-time Sound Generation 

Given limited computational resources, we are faced with the eventuality of exceeding 

those limits as the number of active sounds in the system increases. We have developed a new 

approach in the VAS scheduler which prioritizes the sounds in the environment and enforces level- 

of-detail management based on this prioritization. A real-time scheduling algorithm was devised to 

manage the evaluation of concurrently active sounds in the server. 

A real-time scheduling approach is generally necessary when the correctness of a 

computation not only depends on the results produced but also on the time at which they were 

produced. Clearly, the sound evaluation process falls under these constraints. The computation of 

a sample block by a Sound object must be completed and written to the Device before it completes 

the playback of the previously written sample block. Otherwise, intermittent breaks occur in the 

sound's playback. 

In the study of different real-time scheduling strategies, workload models are used to 

describe the characteristics of the processes to be executed. In those models, an independent unit of 

computation is referred to as a. job. Jobs are classified as hard or soft real-time. Hard real-time jobs 

are those where the results must be completed by a deadline or they are considered in error. For 

soft real-time jobs, this restriction is relaxed where the validity of the results decreases gradually as 

the deadline passes. Jobs are further classified as periodic when their execution consists of a 

periodic sequence of identical requests for execution termed tasks. The rate at which tasks are 

submitted for execution is the job's period. 
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We adopt the hard real-time periodic workload model for scheduling the execution of sound 

evaluation routines. In this workload model, a job set, J = {Jk}, consists of a set of tasks Tk,j for 

j = 1, 2, 3,.... The start time k,j of each task is the time before which its execution cannot begin. 

The period of a job Jk is k,j + 1 - k,j. The deadline of each task Tk,j is the start time of task Tk, 

j+1. The scheduling problem can then be stated as follows: given a job set J, each task Tk,j must 

be scheduled for execution such that it begins execution at some point at or after its start time k,j 

and completes its execution before k,j + 1. A schedule where these requirements are met is termed 

a precise schedule [7]. 

Scheduling concurrent sounds can be easily expressed in terms of the hard real-time 

periodic workload model. The job set consists of the active sounds in the environment. Each 

Sound object periodically submits requests for the evaluation of a sample block of fixed size. 

Because the block size is fixed for all sounds, the periods of all the jobs in the system are identical. 

The computation of a sample block must be completed in a time not to exceed this period. A precise 

schedule is achieved when all the active sounds complete the evaluation of their respective sample 

blocks before their deadline. This may not be possible if the computational resources available are 

exceeded. In order to address this problem we make use of a graceful degradation scheme to 

maintain real-time evaluation rates. 

In a seminal paper Chung et.al [11] describe a technique for evaluating monotone processes 

using a model for imprecise computations. A monotone process is one which is guaranteed to 

produce increasingly accurate results as it is allowed to execute longer. The imprecise model 

partitions a task into a mandatory part and an optional part. The mandatory part is that required to 

produce results at the minimum acceptable precision. The mandatory task set is scheduled as a hard 

real-time task set and a precise schedule is obtained. Any remaining time in the schedule is used to 

execute the optional parts of the task set. The resultant schedule is termed a feasible schedule. The 

evaluation of a synthetic sound in real-time fits the imprecise computation model very well. 

Because evaluating the sound signal at successively higher sampling rates will increasingly 

produce better results, the evaluation routine is a monotone process. 



The VAS scheduler extends this algorithm in two ways. The first is to incorporate a 

dynamic priority scheme. This is necessary since the relative importance of the sounds in the 

environment changes dynamically. The second is to incorporate a two tiered strategy for essential 

and non-essential sounds in the environment. The programmer specifies whether or not a sound is 

essential at its instantiation. This gives the programmer a measure of control over the scheduling 

algorithm. Essential sounds are scheduled as hard real-time jobs, while non-essential sounds are 

scheduled as soft real-time jobs, executing only if all the essential sounds have been evaluated at 

full resolution. Two components were necessary to incorporate this strategy into the VAS 

scheduler. One was a dynamic priority algorithm for rating the active sounds in the environment. 

The other was a mechanism for iteratively evaluating synthetic sounds. We discuss each of these 

and then present the scheduling algorithm. 

4.1.   Prioritizing Sounds 

Ideally, what the priority algorithm must do is determine which sounds in the environment 

the listener is attending to. This, of course, is impossible to do specifically since attention is 

subjective; the listener cognitively decides what to pay attention to. The best we can do is to attempt 

to guess what the listener may be paying attention to based on the state of the listener and the 

sounds in the environment. Based on psychoacoustic principles, we have determined three factors 

which we use to rate sounds in the environment: the listener's gaze, the intensity of the sound, and 

the age of the sound. 

The orienting response [12] is a human response to aural stimuli where the listener will 

attempt to support the perception of aural stimuli through visual correspondence. This reaction can 

be very useful in determining what the listener is attending to. Our priority algorithm approximates 

this reaction by weighing a sound using a cos scaling factor where is the angle between the 

listener's gaze vector and the sound (fig 3). 
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The final scaling factor is based on the adaptation response of the human aural system [14]. 

Our sensitivity to aural stimuli decreases as the presence of the stimuli persists. This process 

continues for approximately three minutes after which it levels off. The scaling factor for this 

component begins at the start of a sound at its maximum level and decreases linearly until it reaches 

zero at the end three minutes. 

Given these three scalars, the priority of a sound is calculated as follows: 

P(si) = 
\W. cos0,. + W, (3 - 7]) + WJ, if 0 < T. < 3 

IW^cosÖ.+W,/,. otherwise 

where: 6X is the angle shown in fig. 3 

Ij is the intensity of the sound at the li stner 

Tj is the amount of time in seconds that a sound has been playing 

W , Wt, W*! are weights used to vary the contribution of each component 
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4.2.   Iterative Evaluation of Synthetic Sounds 

Sound objects evaluate samples in blocks corresponding to 100 ms at the global sampling 

rate of the system which is set upon invocation of the server. The size of the sample blocks is 

important because it determines the granularity of the parallelism among active sounds, and the 

latency between a call to start a sound and the appearance of the sound at the output device. If the 

size of the sample block is too small, the parallelism becomes too fine grained and scheduling 

overhead costs become prohibitive. A large sample block, on the other hand, increases the latency 

exhibited by the system where it becomes perceptible by the listener. The largest non-perceptible 

delay between a sound producing event and the occurrence of the corresponding sound is 100 ms. 

A block size corresponding to this value was chosen to maximize block size without introducing 

perceptible delay. 

The imprecise computation model requires that we iteratively evaluate a Timbre Tree at 

successively higher resolutions. If the iteration is stopped before full resolution is reached, the 

evaluation routine will not have generated all the samples. The missing samples must be calculated 

using interpolation. To facilitate this, a buffer structure was devised which we call the Interpolating 

Buffer or IBuffer. The IBuffer consists of a set of mini-buffers in a stacked configuration as 

depicted in fig. 4. The depth of this stack determines the number of iterations necessary before full 

resolution is reached. On each iteration, the evaluation routine calculates a block of samples 

equivalent to 100 ms at 1/d of the global sampling rate, where d is the depth of the buffer. The 

resultant sample block is written to the IBuffer which fills one of its mini-buffers with the samples. 

The order in which the mini-buffers are filled is predetermined by the IBuffer to minimize 

the number of empty mini-buffers between any two full mini-buffers. The starting time of the 

evaluation at each iteration is offset by an amount 

x Depth 
Rate 
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Figure 5: The interpolation step and output buffer. The IBuffer is depicted 
after three iterations. The samples in mini-buffers 0, 2, and 4 are evaluated. 
Those in 1 and 3 are interpolated. 

4.3.   Scheduling Algorithm 

Scheduling algorithms which have been formulated to assign k prioritized, periodic jobs to 

n processors have unacceptable worst case conditions [15]. Instead, the problem is partitioned into 

two parts. First jobs are assigned to processors once and for all. Each processor is then scheduled 

as based on uniprocessor scheduling algorithms. The problem then becomes finding an optimal 

assignment of jobs to processors [16,17]. The VAS scheduler uses a simple O(n) algorithm based 

on the greedy method [18]. The algorithm attempts to maintain an even load distribution over all 

the processors in order to minimize the total error exhibited by the system. When a job enters the 

scheduler, the processor list is searched for the processor with the least utilization factor and the 

job is assigned to that processor. The utilization factor of a processor is based on total execution 

time of the jobs already assigned to it. 

Having assigned each processor a task set, the scheduler must determine the amount of 

processing time to assign to the optional part of each task. Processing times are chosen in order to 

minimize the error function E, while taking into account aesthetic constraints. 
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Initialize time = period, ready_set = {}, TE = { essential tasks}, TN = { non-essential tasks}, T 
TE 

Step    for all t in T 
if time >= t.iteration_time 

assign t one iteration 
time = time - t.iteration_time 
add t to ready_set 

if time > 0 
Ptotal = tpriority for all t in ready_set 
for all t in ready_set T 

n = time * tpriority/Ptotal 
assign t n iterations 
time = time - n * t.iteration_time 

Iterate if time > 0 
T = TN, repeat Step 

Figure 6: VAS's scheduling algorithm 

£ = 2>*(i-^-) 

where   wk is the relative importance of task k 

ak is the amount of time assigned to task k 

rk is the time required to complete task k at full resolution 

Because the human ear is very sensitive to discontinuities in the timbre of sounds, degradation 

must occur gradually as load conditions change if perceptible effects are to be minimized. 

Furthermore, because the listener can be cognitively attending to multiple sounds occurring within 

the environment, the scheduler must adhere to a fair strategy avoiding the starvation of less 

important sounds. 

The VAS scheduler uses a heuristic algorithm which minimizes the error function E 

according to the above constraints. In order to integrate soft real-time jobs into the job mix, the 
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VAS scheduler maintains two lists of active tasks: one for essential sounds and the other for non- 

essential sounds. Non-essential tasks are only scheduled once all the essential tasks have been 

assigned their full execution time. 

The scheduling algorithm (fig. 6) minimizes the error function while observing aesthetic 

constraints. If a precise schedule is possible then each task will execute at least one iteration. If 

conditions deteriorate to the point where a precise schedule of one iteration is not be possible, the 

algorithm schedules as many of the highest priority tasks as possible, dropping the lower priority 

tasks from the schedule. 

5.      Real-time Sound Rendering 

In designing VAS, we placed significant emphasis on having the system support a variety 

of rendering techniques. An abstract Device object defines the interface between any rendering 

mechanism and VAS. New devices are added to VAS by specializing the Device object through 

inheritance. The specialized object implements the abstract device's primitives by interfacing with a 

an external physical device through its supplied programming interface or by implementing them 

directly in software. 

This architecture, while general, requires that the spatialization device accept multiple 

sample streams to be rendered and combined in some fashion depending on the rendering 

technique. Many hardware-based localization devices, however, either do not support this 

functionality, or only support a limited number of external inputs. Their architecture is optimized 

for sound sources consisting of sampled sounds which reside locally in the device. This scheme 

has the advantage of off-loading all the audio processing onto the hardware device. However, it 

constrains the available audio processing to whatever the hardware device supports, limiting the 

user's options and requiring expensive hardware upgrades to increase the functionality of the 

available audio processing. 

As an alternative to hardware-based spatialization, VAS provides a no cost spatialization 

option using the audio capabilities found in most modern computers. A specialized Device object 
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was created which uses the four channel output available on Silicon Graphics computers. Each 

Device object generates four channels of output properly scaled to position the sound to the desired 

location in the sonic environment. The spatialization algorithm determines the scaling for each 

channel. 

6. Conclusion 

The VAS server addresses important problems which are currentiy limiting the use of 

sound in VEs. High level abstractions are provided for modeling the auditory world facilitating the 

integration of sound into VE systems. VAS's synthetic sound sources make it an ideal test bed for 

studying sound synthesis from motion parameters as well as data sonification problems. An 

extensible architecture allows VAS to provide a variety of rendering options including a no-cost 

spatialization option. Finally, VAS frees the programmer from dealing with the contingency of 

exceeding a limit on the number of current sounds possible through its use of a novel graceful 

degradation scheme for sound generation. While this technique was specifically designed for the 

sound generation process, the results presented may be applicable to other problems, particularly 

the real-time generation of procedural textures. 
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